BASiC基半第二代SiC碳化硅MOSFET在光逆变器及光储一体机中的应用
适用于光逆变器及光储一体机的国产高可靠性碳化硅(SiC)MOSFET-倾佳电子专业分销
BASiC基半第二代SiC碳化硅MOSFET体二极管的通流能力表现优异,在MPPT接反时能够承受的持续电流更大。
BASiC基半B2M040120Z体二极管相对于主流竞品管压降在常温和高温时的管压降要更低,在光伏电池板全部反接后,能够承受的续流电流更大。
BASiC基半第二代SiC碳化硅MOSFET两大主要特色:
1.出类拔萃的可靠性:相对竞品较为充足的设计余量来确保大规模制造时的器件可靠性。
BASiC基半第二代SiC碳化硅MOSFET 1200V系列击穿电压BV值实测在1700V左右,高于市面主流竞品,击穿电压BV设计余量可以抵御碳化硅衬底外延材料及晶圆流片制程的摆动,能够确保大批量制造时的器件可靠性,这是BASiC基半第二代SiC碳化硅MOSFETz关键的品质.
2.可圈可点的器件性能:同规格较小的Crss带来出色的开关性能。
BASiC基半第二代SiC碳化硅MOSFET反向传输电容Crss 在市面主流竞品中是比较小的,带来关断损耗Eoff也是市面主流产品中非常出色的,优于部分海外竞品,特别适用于LLC应用.
Ciss:输入电容(Ciss=Cgd+Cgs) ⇒栅极-漏极和栅极-源极电容之和:它影响延迟时间;Ciss越大,延迟时间越长。BASiC基半第二代SiC碳化硅MOSFET 优于主流竞品。
Crss:反向传输电容(Crss=Cgd) ⇒栅极-漏极电容:Crss越小,漏极电流上升特性越好,这有利于MOSFET的损耗,在开关过程中对切换时间起决定作用,高速驱动需要低Crss。
Coss:输出电容(Coss=Cgd+Cds)⇒栅极-漏极和漏极-源极电容之和:它影响关断特性和轻载时的损耗。如果Coss较大,关断dv/dt减小,这有利于噪声。但轻载时的损耗增加。
BASiC基半第二代碳化硅MOSFET系列新品基于6英寸晶圆平台进行开发,比上一代产品在品质系数因
子(FOM=Qg*Rdson)、开关损耗以及可靠性等方面表现更为出色。同时,B2M SiC MOSFET系列产
品的封装更为丰富,以更好满足客户需求。
同时,BASiC今年将会推出更大导通电流、更低导通电阻以及更高耐压的1200V 18mΩ 和2000V
24mΩ SiC MOSFET系列产品,并开发了2000V 40A SiC SBD进行配合使用。
基半B2M第二代碳化硅MOSFET器件主要特色:
• 比导通电阻降低40%左右
• Qg降低了60%左右
• 开关损耗降低了约30%
• 降低Coss参数,更适合软开关
• 降低Crss,及提高Ciss/Crss比值,降低器件在串扰行为下误导通风险
• z大工作结温175℃• HTRB、 HTGB+、 HTGB-可靠性按结温Tj=175℃通过测试
• 优化栅氧工艺,提高可靠性
• 高可靠性钝化工艺
• 优化终端环设计,降低高温漏电流
• AEC-Q101
组串式逆变器是基于模块化概念基础上的,每个光伏组串通过一个逆变器,多块电池板组成一个组串,接入小功率单相逆变器在直流端具有z大功率峰值跟踪,在交流端并联并网,已成为现在全球市场上z流行的逆变器。拓扑结构采用DC-DC-BOOST升压(MPPT)和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。体积较小,可室外壁挂式安装。
组串光伏逆变器有多路MPPT,每路MPPT器件选型为B2M035120YP*1(电流能力更大,支持更高功率的光伏电池板接入),或者B2M040120Z*1+碳化硅肖特基二极管B2D30120HC1,B3D30120HC,B2D30120H1,B3D30120H.
(1)MPPT选择基半SiC碳化硅功率器件方案的逻辑:
组串式逆变器早期旧方案中的开关管需要用两颗40A/1200V IGBT并联或者75A/1200V IGBT,升压二极管是1200V 60A Si FRD,开关管的开关频率只有16kHz~18kHz
而新方案选用基半第二代SiC碳化硅MOSFET开关频率为40kHz,且单路MPPT不用并联开关器件,同时大幅度减小了磁性元件的体积和成本,并且SiC MOSFET的壳温低于100℃,提升了系统可靠性。
系统厂商评估过采用基半第二代SiC碳化硅MOSFET,系统成本可以计算的过来。
(2)选用基半第二代SiC碳化硅MOSFET的原因
组串式逆变器单路MPPT的有效值为32A,并考虑开关损耗因素,使用B2M035120YP*1(电流能力更大,支持更高功率的光伏电池板接入),或者B2M040120Z*1可以完成任务。工商业主要采用210组件,功率密度还在提升。B2M035120YP*1(电流能力更大,支持更高功率的光伏电池板接入),或者B2M040120Z*1的门极电阻:Rgon=Rgoff=10Ω,驱动电压:-4V/18V.
(3)光储一体机储能用双向Buck-Boost DC/DC变换器,选用B2M035120YP(电流能力更大)或者B2M040120Z替代IGBT器件,提升Buck-Boost DC/DC变换开关频率到40-60KHz,大幅度减小了磁性元件的体积和成本.
LLC,移相全桥等应用实现ZVS主要和Coss、关断速度和体二极管压降等参数有关。Coss决定所需谐振电感储能的大小,值越大越难实现ZVS;更快的关断速度可以减少对储能电感能量的消耗,影响体二极管的续流维持时间或者开关两端电压能达到的z低值;因为续流期间的主要损耗为体二极管的导通损耗.在这些参数方面,B2M第二代碳化硅MOSFET跟竞品比,B2M第二代碳化硅MOSFET的Coss更小,需要的死区时间初始电流小;B2M第二代碳化硅MOSFET抗侧向电流触发寄生BJT的能力会强一些。B2M第二代碳化硅MOSFET体二极管的Vf和trr 比竞品有较多优势,能减少LLC里面Q2的硬关断的风险。综合来看,比起竞品,LLC,移相全桥应用中B2M第二代碳化硅MOSFET表现会更好.
专业分销基半国产车规级碳化硅(SiC)MOSFET,国产车规级AEC-Q101碳化硅(SiC)MOSFET,国产车规级PPAP碳化硅(SiC)MOSFET,全碳化硅MOSFET模块,Easy封装全碳化硅MOSFET模块,62mm封装全碳化硅MOSFET模块,Full SiC Module,SiC MOSFET模块适用于超级充电桩,V2G充电桩,高压柔性直流输电智能电网(HVDC),空调热泵驱动,机车辅助电源,储能变流器PCS,光伏逆变器,超高频逆变焊机,超高频伺服驱动器,高速电机变频器等,光伏逆变器专用直流升压模块BOOST Module,储能PCS变流器ANPC三电平碳化硅MOSFET模块,光储碳化硅MOSFET。专业分销基半SiC碳化硅MOSFET模块及分立器件,全力支持中国电力电子工业发展!
碳化硅MOSFET具有优秀的高频、高压、高温性能,是目前电力电子领域z受关注的宽禁带功率半导体器件。在电力电子系统中应用碳化硅MOSFET器件替代传统硅IGBT器件,可提高功率回路开关频率,提升系统效率及功率密度,降低系统综合成本。
基半第二代碳化硅MOSFET系列新品基于6英寸晶圆平台进行开发,比上一代产品在比导通电阻、开关损耗以及可靠性等方面表现更为出色。在原有TO-247-3、TO-247-4封装的产品基础上,基半还推出了带有辅助源极的TO-247-4-PLUS、TO-263-7及SOT-227封装的碳化硅MOSFET器件,以更好地满足客户需求。
基半第二代碳化硅MOSFET亮点
更低比导通电阻:第二代碳化硅MOSFET通过综合优化芯片设计方案,比导通电阻降低约40%,产品性能显著提升。
更低器件开关损耗:第二代碳化硅MOSFET器件Qg降低了约60%,开关损耗降低了约30%。反向传输电容Crss降低,提高器件的抗干扰能力,降低器件在串扰行为下误导通的风险。
更高可靠性:第二代碳化硅MOSFET通过更高标准的HTGB、HTRB和H3TRB可靠性考核,产品可靠性表现出色。
更高工作结温:第二代碳化硅MOSFET工作结温达到175°C,提高器件高温工作能力。
碳化硅 (SiC) MOSFET出色的材料特性使得能够设计快速开关单极兴器件,替代升级双极性 IGBT (绝缘栅双极晶体管)开关。碳化硅 (SiC) MOSFET替代IGBT可以得到更高的效率、更高的开关频率、更少的散热和节省空间——这些好处反过来也降低了总体系统成本。SiC-MOSFET的Vd-Id特性的导通电阻特性呈线性变化,在低电流时SiC-MOSFET比IGBT具有优势。
与IGBT相比,SiC-MOSFET的开关损耗可以大幅降低。采用硅 IGBT 的电力电子装置有时不得不使用三电平拓扑来优化效率。当改用碳化硅 (SiC) MOSFET时,可以使用简单的两级拓扑。因此所需的功率元件数量实际上减少了一半。这不仅可以降低成本,还可以减少可能发生故障的组件数量。SiC MOSFET 不断改进,并越来越多地加速替代以 Si IGBT 为主的应用。 SiC MOSFET 几乎可用于目前使用 Si IGBT 的任何需要更高效率和更高工作频率的应用。这些应用范围广泛,从太阳能和风能逆变器和电机驱动到感应加热系统和高压 DC/DC 转换器。
随着自动化制造、电动汽车、先进建筑系统和智能电器等行业的发展,对增强这些机电设备的控制、效率和功能的需求也在增长。碳化硅 MOSFET (SiC MOSFET) 的突破重新定义了历史上使用硅 IGBT (Si IGBT) 进行功率逆变的电动机的功能。这项创新扩展了几乎每个行业的电机驱动应用的能力。Si IGBT 因其高电流处理能力、快速开关速度和低成本而历来用于直流至交流电机驱动应用。z重要的是,Si IGBT 具有高额定电压、低电压降、低电导损耗和热阻抗,使其成为制造系统等高功率电机驱动应用的明显选择。然而,Si IGBT 的一个显着缺点是它们非常容易受到热失控的影响。当器件温度不受控制地升高时,就会发生热失控,导致器件发生故障并z终失效。在高电流、电压和工作条件常见的电机驱动应用中,例如电动汽车或制造业,热失控可能是一个重大的设计风险。
新闻中心